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I 
N 1938, THREE YEARs BEFORE I wAs BORN, a live coelacanth was taken from the waters off the eastern 
coast of South Africa. Previously known only in the fossil record from some hundred million years 
ago, the coelacanth and the implications of its discovery remained big news for years, fueling an 

enthusiasm for “creatures” that persisted for decades. Those of us born in the Forties grew up on photos 
of eminent scientists setting off on expeditions, their sun-burnt faces dwarfed by mountain explorer’s 
garb, or making thumbs-up signs as they entered the water in scuba gear. We shared their confident 
expectation that the Loch Ness Monster, Sasquatch, the Yeti - even a dinosaur - soon would be taken 
alive. 

I grew up loving the sea and loving fishing in particular, but unlike most fishermen I cared less for 
the size or quantity of the catch than for its rarity. Nothing could be more exciting than pulling (if not 
this time, then surely the next!) a mysterious and hitherto unknown creature from the water. Clearly, I 
wanted to catch my own coelacanth. 

Reports of fishing expeditions usually are scorned by scientific journals. However, Sir Derek Barton, 
Chairman of the Executive Board of Editors of Tetrahedron Publications, must take some responsibility 
for the nature of this article since he suggested it might be a rather personal review of my chemistry, 
including some of the background leading up to it: first of all, my background is awash with fish and fish- 
ing, specifically in the Manasquan River and that part of the Jersey Shore where the Manasquan meets the 
Atlantic Ocean; and secondly, 1 do chemistry the way I used to fish. 

*Dedicated to four MIT colleagues: to Dan Kemp, who showed me how one should teach and taught me never to confuse 

opportunism with good science; to fellow fishermen Glenn Berchtold and George Biichi, who from the very first, starting 

with their generous mentoring when I was a novice faculty member, set an example that was and always has been worth emu- 

lating; and to Satoru Masamune, my all-time chalk-talk companion of choice. 
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As to the chemistry, upon looking through the contributions from Tetrahedron Prize recipients who 
preceded me at this honorable writing task, I realize they organized their chemical careers in terms of the 
different areas and the discrete projects in those areas on which they have worked. Essentially all my 
chemical investigations, however, are in only one area, and I tend to view my activity there not in terms of 
projects, but in terms of two passions I have had since graduate school and where those passions led me: 

I am passionate about the Periodic Table, and selenium, titanium and osmium became my favorite 

elements; 

I am passionate about catalysis, and, having laid a hand on two splendid examples of this elusive phe- 

nomenon, nothing else ever will be as stimulating. 

What the ocean was to me as a child, the Periodic Table is to the chemist; new reactivity is, of course, my 
coelacanth. 

Even though I grew up in Philadelphia, if someone asks me where I’m from I usually say “the Jersey 
Shore,” because that’s where my family spent summers, as well as many weekends and holidays, with my 
father joining us whenever he could. My father had a flourishing one-man general surgery practice which 
meant he was perpetually on call. With him at home so little and practically guaranteed to be called away 
when he was, my mother liked being near family and friends at the Shore, where her parents had settled 
and established a fishery after emigrating from Norway. When I was a baby, my parents bought a lot on a 
bluff overlooking the Manasquan River about four miles up from where the river enters the Atlantic. 

Like many scientists I was a very shy child, happier and more confident when on my own. My 
interest was totally absorbed by the river. In those days the incoming tide transformed out part of the river 
from a channel flanked by broad mud flats to a quarter-mile basin that exploded with life of myriad vari- 
ety - about a dozen kinds of fish big enough to make it to the dinner table, plus blue crab, eel, and a 
bounty of fry and fingerlings that would graduate downstream to the ocean. I was obsessed with finding 
and observing everything that lived in the river and knowing everyone who worked on it. 

My most delicious childhood memory is the excitement I experienced the very moment I awoke on 
almost every summer morning; the sound I associate with that feeling is the distant whine of my first sci- 
entific mentor’s outboard motor. That was my wake-up call, and within minutes I was at the river’s edge, 
waiting in the predawn stillness for Elmer Havens and his father Ollie to make their way across the river 
from Herbertsville to pick me up to “help” them seine for crabs. Amused by my regularly walking along 
the bank to watch them haul their seine, Elmer eventually installed me in the boat, which he used for 
transportation as well as for steadying himself as he dragged the seine’s deep-water end. Ollie walked one 
end of the seine along the shore, alarming the crabs gathered at the river’s edge, and frightening them 
toward deeper water and so into the net’s pocket. Chest deep in water and mud, Elmer walked parallel to 
his father, one arm clasping the seine, the other hooked over the boat’s gunwale. Elmer and I, our heads 
close together, would speculate about the catch, taking into account all the variables - the weather, the 
season, the tide. Every hundred yards or so, Elmer doubled ahead toward the shore to draw the purse. I 
liked it best if a big eel or a snapping turtle got caught up in the net, making the water boil and the net 
flop into the air. I always hoped we’d catch something new. 

I had a little dinghy, and my realm of exploration expanded in direct proportion to my rowing abil- 
ity. The same tide that created this abundant estuary also was my nemesis, forever stranding me upriver in 
the narrows ot perhaps at Chapman’s Boat Yard, a mile down river and on the opposite bank. Since my 
parents couldn’t keep me off the water, they opted for increasing the likelihood of my getting home 
unaided by giving me a little boat with an outboard. It wasn’t long before I went down river all the way to 

the inlet (absolutely forbidden, of course), and, soon after, the prospect of new creatures to pull from the 
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water lured me out through the rock jetties and into the ocean: at the time I was only seven or perhaps 
eight years old. 

By the time I was ten, I ran crab and eel traps and supplied everyone we knew with fish as well; at 
fourteen I started working during the summer as the first (and only) mate on a charter boat. My parents 
allowed me to start mating when I was so young and small even for my age because I was offered a job on 
a relative’s boat - little did my parents or I know that Uncle Dink, a cousin actually, offered me the job 
so he wouldn’t have to pay a “full-sized” helper. I so wanted to keep working on the boats that it was years 
before I dared tell my parents what went on aboard the Teepee, like how the Coast Guard refused assis- 
tance to Dink because his boat was in chronic disrepair. (Consequently, some of our adventures at sea 
were memorable indeed - grappling hooks and guns have their place in the canon - and I mention this 
trove of Uncle Dink stories because for years my MIT colleagues begged me to tell them over and over 
again.) 

On a charter boat the captain pilots the ship and finds the fish the customers reel in. Meanwhile the 
mate is over the boat like a dervish, skillfully arraying the water with fishly temptations - adjusting out- 
riggers, finding the perfect combination of lure or bait and tackle, always mindful of the action on nearby 
boats competing for the same fish.* Since my friends were all mates we naturally agreed that enticing fish 
to bite was the greatest challenge, but I alone felt that getting the strike was the most fun, even more 
exciting than landing the fish. I worked as a mate almost daily every summer, right up until the day before 
I set out from New Jersey headed toward the biggest ocean and graduate school at Stanford University. 

That was in 1963. In the spring of that year my inspiring Dartmouth College chemistry professor 
and first research director, Tom Spencer, talked me into delaying entering medical school to try a year of 
graduate school He sent me to Stanford specifically to work for E. E. van Tamelen, Tom’s own mentor at 
Wisconsin. The appeal of fishing was such that Tom, to my later regret, never succeeded in getting me to 
spend any summers working in his lab. In fact even in graduate school I expressed my ambivalence by 
continuing to fantasize about finding a boat out of Manasquan to skipper and by failing - this did not 
please v.T. - to do the simple papeMrork required to renew my NSF predoctoral fellowship. 

However, toward the end of my first year at Stanford a serendipitous misunderstanding catalyzed 
the complete transfer of my passion (some would say my monomania) from one great science to another, 
from fishing to chemistry. Before leaving for a lengthy European visiting professorship, v.T sent me to the 
library to look for reactive inorganic species that might produce interesting transformations of organic 
compounds. My first projects with v.T were selective oxidation of polyolefins and titanium-mediated 
deoxygenative coupling of alcohols, and I was already primed to appreciate useful chemistry employing 
“strange” elements after selecting the Wittig Reaction from a list of suggested topics for my student semi- 
nar. The Wittig Reaction really engaged my enthusiasm, and I ingenuously concluded that finding new 
reactions other chemists could use looked like a lot of fim. 

*This diversion into fishing-as-metaphor-for-research could go on for pages: consider how when a boat was hooking tuna - 
the catch of choice - word spread by radio and the competition converged from every compass point. The hot boat’s cap- 
tain greeted this acknowledgment of his success with some anxiety: while he liked setting the other captains’ agendas and 
pleasurably speculating that the parties on the other boats were considering chartering him next time, the secrets of his suc- 
cess nonetheless required protection, so trolling speeds were lowered to sink the lures and prevent rubberneckers from identi- 
fying them, and red herrings (literally, on occasion!) were casually displayed on the fish box. 

Isaak Walton and John Hersey devoted whole books to this metaphor, so indulge me for a few more sentences. The 
handy process VS. product dichotomy chat applies so neatly to much of human endeavor illuminates &is fisherman-chemist 
comparison, too. Conventional wisdom places fly-fishing at the “process” end of the scale, while a “product” fisherman uses 
sonar to find a school before he bothers to get his line wet. Process person though I am, only the Manasquan River ran 
through my fishing days: trolling for the unknown always had more appeal than hooking a trout I already knew was there. 
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In any event upon v.T.H return I discovered he had not intended for me to spend all those months 
immersed in the literature. While I had no research results to report, I did have a notebook filled with 
ideas and an eagerness to drop my lime throughout the vastness of the Periodic Table. I don’t think I’ve 
gone fishing in the literal sense a dozen times since then! 

From van Tamelen, a Gilbert Stork prott&, I inherited enthusiastic disdain for “safe” problems,* 
deep admiration for traditional multistep organic synthesis and awe before selective biological catalysis: 
studying the squalene oxide/lanosterol cyclase enzyme left me impressed by enzymic selectivity but 
depressed by the difliculty of using enzymes for synthetic transformations. After getting a double dose of 
him in the classroom, Derek Barton became my model. At Dartmouth Tom Spencer taught a course on 
conformational analysis based on one he took at Wuconsin from William S. Johnson (Tom’s uncle, in 
fact), then I experienced the original at Stanford.t Being wet behind the ears I took conformational analy- 
sis for granted: it was Sir Derek’s search for new reactivity that electrified me. A postdoc with Jim Coll- 
man (the only person, I concede, who gets more excited about chemistry than I do) ignited my interest in 
using simple metal complexes to develop catalysts (in the Collman lab, incidentally, I had the privilege of 
many hours at the blackboard with labmate Bob Grubbs). Then before taking up my job at MIT, a post- 
dot with Konrad Bloch confirmed my hunch that impatience rendered me incompetent around enzymes. 
Konrad graciously let me start working on my own ideas when his proved much too frustrating for me. 

One other part of my background seems to have contributed to my chemistry. The first American 
Sharpless (“Sharples” then) came to Pennsylvania in the Seventeenth Century not long after William 
Penn. My father was a practicing Quaker only as a child, but the values in our home were Quaker values, 
and I was educated in a Quaker school. The Quakers encourage modesty, thrift, initiative and enterprise, 
but the greatest good is being a responsible member of the community - being useful. “Elegant” and 
“clever” were the chemical accolades of choice when I started doing research, just as “novel” is high praise 
now. Perhaps the Quakers are responsible for me valuing “useful” most. 

So that, with apologies to Sir Derek for taking such advantage of his suggestion, is my background 
as a chemist. I’ve been accused of going too far when I speculate that chin&y fascinates me because I han- 
dled my umbilical cord in utcro, but I’m quite sincere in proposing that the extraordinary training I 
received as a young chemist transformed an existing passion for discovering the unknown into the search 
for new reactivity, and that Quaker utilitarianism made the selective oxidation of olefins so appealing. 

With respect to chemical reactions, “useful” implies wide scope, simplicity to run, and an essential 
transformation of readily available starting materials. Clearly, if useful new reactivity is the goal, investi- 
gating the transformations chemists rely on is the obvious strategy. The processes for the selective oxida- 
tion of olefins have long been among the most useful tools for day-to-day organic synthesis because of 
these appealing characteristics of olefins: 

they are among the cheapest functionalized organic starting materials, 
they can be carried “hidden” through conventional acid/base-catalyzed transformations, then 

“revealed” at will by adding heteroatoms through selective oxidations, 
most simple olefins are prochiral, providing a prominent portal to the chiral world. 

*Sat Masamune and Peter Dervan, fellow van Tamelen aumni, and I often discuss this shared legacy. 

+wh en teaching MIT undergraduates I ahvays said, “The lights came on with conformational analysis,” without thinking 

where I picked up the phrase, but now I know: the previous Tetrahedron Prize article states, “Just as chemists of the Robin- 

son generation worked without concern for stereochemical factors so we, in the early days, were working in ignorance of con- 

formational considerations until Derek Barton showed us the light in 1950.” The author is, of course, Bill Johnson.’ 
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SCHEME I 

Regio- and Enantioselective Monoepoxidations of Geraniol 

The trisubstituted olefin geraniol, in addition to being one of my favorite smells, provides an excel- 
lent case study both for laying out the challenges of selective olefin oxidation as well as for noting some 
benchmarks in meeting those challenges. 

As shown in scheme I, geraniol has two trisubstituted olefinic units, one of which has a hydroxyl in 
the allylic position. Four monoepoxides are possible: making either racemic 2 or racemic 3 requires regio- 
(or chemo-) selectivity, while making each of the individual enantiomers requires enantioselectivity. When 
Henbest showed that the electronic deactivation by the oxygen substituent at C-l causes petacids to prefer 
the 6,7-double bond (especially on the ester derivatives), making racemic 3 became possible.’ When I 
started doing research in the Sixties, neither racemic 2 nor any of the enantiomers could be synthesized 
directly. Solving the other half of the regioselectivity problem was an obvious challenge, but enantioselec- 
tivity was considered well-nigh impossible. 

In 1973 Bob Michaelson cracked the other half of the regioselectivity problem presented by 
geraniol.’ Since early-transition-metal-catalyzed epoxidations with alkyl hydroperoxides proved highly 
selective for the 2,3-position, racemic 2 could be prepared as well. 

In 1980 Tsutomu Katsuki discovered the titanium-catalyzed asymmetric epoxidation (AE); the 
enantioselective oxidation of olefins bearing allylic hydroxyl groups made it possible to make either 2 or 
02~2 thus solving one side of the enantioselectivity problem.4 

TABLE I 
Some Widely-Used Catalytic Asymmetric Processes 

Reported Process 

1968 

1978 
1980 
1988 

‘990 

Hydrogenation of functionaliz\b ~~fins7”sa 
Isomerization of allylic amines ’ ’ 
Titanium-catalyzed epoxidation of allylic alcohols 4’9a 
Osmium-catalyzed dihydroxylation of isolated olefins 24’9b 
Manganese-catalyzed epoxidation of isolated olefins &I0 
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SCHEME 2 

1 AD-a 

\ 

The osmium-catalyzed asymmetric dihydroxylation (AD), discovered in 1987, subsequently was 
improved to the point that either 3 or ena3 could be made by way of the diol, an indirect solution to 
enantioselective epoxidation at the 6,7-position (scheme 2).’ 

In 1990 came the breakthrough introduction of enantioselectivity into existing salen ligand 
catalysts6 Eric Jacobsen’s exciting manganese catalyst for isolated-olefin epoxidation came first and is still 
the leader, but the Jacobsen Epoxidation works best on only one of the six olefin-substitution classes. 
Nonetheless, its very existence is tantalizing, encouraging the hope that a general, off-the-shelf solution 
exists for the direct asymmetric epoxidation of the full range of isolated olefin substitution patterns. 

The greater generality of man-made catalysts such as these compared with enzymes was noted first 
by Knowles 7a’c and Kagan. 7h During the lean times in the first decade of my career, their pioneering 
development of man’s first highly enantioselective catalysts (the L-dopa synthesis that came out of 
Knowles’ Monsanto lab was the asymmetric hydrogenation’s first commercial application) sustaineccmy 
faith that a catalyst for asymmetric oxidation could be found. Jack Halpern’s mechanistic studies on 

asymmetric hydrogenation catalysis likewise inspired me. Several Japanese chemists, chief among them 
Ryoji Noyori,7e hugely extended both the scope and application of the asymmetric hydrogenation 
process. 

This focused search has frustrated but never bored me even after so many years, and the geraniol 
paradigm illustrates why. My own investigations into the oxidation of olefins commenced at MIT in 1970, 

but, fittingly, I was back at Stanford on January 18, 1980, for Tsutomu Katsuki’s dramatic discovery of the 
titanium-catalyzed asymmetric epoxidation. 4 Two years later the most scientifically stimulating and pro- 

fessionally gratifying collaboration of my career, the total syntheses of the eight L-hexoses with my MIT 
colleague Sat Masamune, capped the AE’s discovery.” Previous articles” in a vein similar to this one 
describe that chemistry; understanding the AE’s significance and putting that understanding to work are 
the purview here. 

After the euphoria of completing the hexose syntheses, three years were spent developing, refining 
and finding more applications for the AE. During this time I returned to the search for new reactivity, but 
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it was clear that my random, scattershot attempts were going nowhere,* so I was grateful for the opportu- 

nity to spend the first three months of 1987 as a Sherman Fairchild Scholar at Caltech. 

Many universities and institutions have handsome Fairchild buildings, but Caltech, ever the bastion 

of collegiality and camaraderie, used its Fairchild grant to endow a program that brings scientists from 
many fields to be housed graciously in the sunshine for as long as a year. Since my research group’s investi- 

gation of the AE had reached the point of diminishing returns, I left for Pasadena hoping to renew my 

mission. 

I love reading journals, and I love mountains, so the Caltech library with its panoramic view of Mt. 

Wilson became my thinking place of choice. Every day Mt. Wilson offered new vistas, especially on those 

occasions when snow fell during the night. One morning the mountain was completely cloaked (the first 
time a freezing temperature was recorded in downtown IA, I recall), and the melting snow receded at 

such a clip I was sure I saw it happening. Mt. Wilson was the perfect backdrop for bringing my own big 

picture back into focus, and I returned to MIT eager to renew my search for new reactivity. Meditating 

on the AE yielded this lesson to guide that search: 

l&and-accelerated catalysis (the significance of which is docu- 

mented in M. G. Finn’s fine MIT thesis on the mechanism of the 

AE13), is crucial to the AE and not merely a feature of it; despite 

its rarity this phenomenon might be the agent for uncovering 

more catalytic processes 

Of course the first and best-known example of ligand acceleration is found in Criegee’s papers from 
the Thirties. I4 He observed that pyridine accelerates the reaction in his classic study of osmium tetroxide 

*I have enormous admiration for colleagues who can keep multiple research projects alive and large groups humming, but 
the “monomania” that prevents me from being able to do that is my long suit as well, making it possible to concentrate - 
for years, actually - on a single topic. I know some chemists call my approach “intuitive,” a term I’ve always thought under- 
estimates the rigor that frames my method; perhaps “unstructured” or “contemplative” is more accurate. Many of my cohorrs 
are quick and facile and can jump on a few interesting bits of data and start building tentative edifices that get taken apart 
and reassembled to suit new data. I, on the other hand, am ruminative: my training after all consisted of busily poking and 
perturbing the Manasquan River, a curriculum both urgenr and leisurely, one that permitted exploration without assump- 
tions and without the structure imposed by deadlines or competition or by knowing too little or too much. Since I was com- 
pelled by shyness to learn to do much on my own, there was (and is) no right or wrong way, only many ways, some more or 
less suited to a given endeavor. The discipline, nonetheless, is exacting: everything that can be observed should be observed, 
even if it is only recalled as the bland background from which the intriguing bits pop out like Venus in the evening sky. The 
goal is always finding something new, hopefully unimagined and, better still, hitherto unimaginable. When I became a 
bench- and desk-bound explorer the method stayed the same. I try to imagine away the packaging information arrives in, 
then let bits and pieces move around lazily, rather like objects tumbling slowly in zero gravity, but eventually, over time, 
exploring every possible relationship with other information that’s previously arrived. Since joining the faculty of The Scripps 
Research Institute, I’ve discovered that ocean swimming and running on the beach provide an excellent medium for this kind 
of activity; however, in any climate the best catalyst is generous, stimulating conversation. This slow but endlessly fascinating 
method is like an exotic ritual courtship, full of displays of bright feathers or offerings of shiny metal or towers of sticks - 
what does it all, what does any of it mean? Enormous concentration is required to remember it all in a way that causes little 
sparks when cerrain conjunctions appear, making a connection with something noted previously, perhaps decades ago. Sadly, 
as I grow older, the connections become harder to summon up, so the sparks, though seeming as bright as ever, are less fre- 
quent. I describe this process at length because it’s not the way most scientists approach their work, nor is it well suited to the 
demands of funding agencies that are railroaded into answering questions posed for political rather than scientific reasons, 
nor to the needs of graduate students who require publications to compete for jobs. Academic chemistry is much harder now, 
and I’m glad I was born when I was. 
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and olehns. Ironically, the lesson from the AE was directing me back toward Criegee, whose discoveries in 
olefin oxidation and osmylation were, in large measure, the jumping off point for my own research career. 

I first looked into Criegee’s process shortly after becoming an assistant professor at MIT. My attrac- 
tion to the reaction of 0~04 with olefins was inevitable. Osmium tetroxide not only accomplishes an 
important synthetic transformation, but it does so with a scope and reliability unique among reactions 
used for organic synthesis. It reacts only with olefins and it reacts with all olefins (shit poetic license 
here). Even R B. Woodward valued CriegePs stoichiometric transformation so much he was willing to 
use IOO g of 0~04 in one shot. Osmium’s expense wasn’t compatible with “useful,” however and, since the 
existing cataIytic variants were not very &c&e, I starting searchiig for a reliable catalytic method. In 
1975 Ibgayasu Akashi found a good process for us based on a hydroperoxide as oxidant, tc&~-butyl 
hydroperoxide (TBHP),r5 but the brass ring was ultimately captured that same year with the publication 
of the famous Upjohn process based on Nmethyl morpholine-iVoxide (NM0).r6 

Throughout the rest of the Seventies osmium remained our primary tool for looking for new reac- 
tivity: we discovered that imido osmium(VII1) species effected stoichiometric &oxyamination of olefins 
in direct analogy to the rir-diydroxylation of ok&s by osmium tetroxide; even more effective catalytic 
versions of those transformations came shortly thereafter. 

In 1977 I left MIT, where I had been a contented member of a wonderful chemistry facuhy since 

1970, for Stanford University, where I previously spent six contented years as a graduate student and post- 
dot, surrounded by a wonderful chemistry facuhy. I never made the transition back to contentment at 
Stanford, probably because my research wasn’t churning up much. This frustrated me and scared off 
potential graduate students who wanted publications, not a fishing expedition. In addition, at Stanford I 
remained awed by a faculty I worshiped when a graduate student, and I lacked the confidence to stand 
firm on issues, particularly faculty appointments, that meant a lot to me. In 1979 at about the same time I 
made the decision to return to MIT, Steve Hentges, who worked in our well-developed osmium imido 

area and already had the material for a good Ph.D. thesis in hand, decided to take on one more project 
before writing up. 

The notion of an asymmetric ligand for osmium tetroxide had been knocking around the lab for 
years, and Steve first approached the idea by making several pyridines with chiral substituents at the z- 
position; these gave diols with essentially 0% ee!17 Pyridine is only a modest &and for osmium tetroxide, 

and we discovered any or-rho substituent is lethal to binding. But since William Griflith at Imperial Col- 
lege showed that quinuclidine bin&rsmore strongly to 0~04, I suggested trying the cinchona alkaloids, 
essentially substituted quinuclidines. (Many chemists have expressed surprise at how quickly we arrived 
at what is now and may always be the best ligand framework for the AD: anyone with a natural products 
background and who is also a fan of Hans Wynberg’s chemistry recognizes the cinchona alkaloids as the 
obvious next step.) The results were spectacular, even without taking into account a measurement error 
(discovered years later) that caused most of the ee’s to be underreported by 5 to I$++!*~ 

Steve had a dramatic story to cap his thesis work, so he started writing; my attention was taken up 
by the decision to return to MIT then a couple of months later Katsuki discovered an asymmetric process 
with ingredients so cheap it made working with osmium look like Rolls-Royce chemistry. Although the 
AE was only weakly catalytic in the early days,” its uniformly high ee’s and nontoxic, inexpensive reagents 
were enough to completely divert our attention from its promising but stoichiometric predecessor, the 
Os04/cinchona asymmetric dihydroxylation. 

The preceding paragraph has no doubt failed to deflect your attention from the obvious question: 
why didn’t I try the Hentges ligands in the Upjohn system in 1979? Indeed, why did I propose the experi- 
ment in my NIH grant renewal in January, 1984, but not follow up on it? “As for the ligand,” I wrote in 
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J-J-0, TBHPn * NJvAi& M”(OR) 

1 rat-2 

PIGURE I 
Metals Catalyzing the Epoxidation of Allylic Alcohols by TBHP 

Adding tartrate ligand alway &ecu reactivity: the titanium system is accelerated; 

al1 twcq-four others are killed or dtamatically slowed! 

the proposal, “it is probably best to stay with the cinchona derivatives because the quinuclidine moiety is 
the best &and we know of for Os(VII1) complexes. The substrate will be stilbene.. .the osmium catalyst 
will be recycled using an amine N-oxide. Ideally, both the osmium and the chiral alkaloid could be used 
in catalytic quantities. A successful system of this type could be of great practical importance.” 

Instead of poking and perturbing, the Jersey Shore School of Thinking’s cardinal rule, I stuck with 
the odds logic suggested: ligands accelerate the reaction of OsO_, with olefins, but they also bind avidly to 
the resulting osmate ester, lethally effecting catalyst turnover. This ability of ligands such as pyridine and 
quinuclidine to kill turnover in catalytic osmylation systems had been often observed in my laboratory. 
What I did not nor could not anticipate is the perfect balance cinchona alkaloids achieve in ligating abil- 
ity, binding well enough to accelerate the key step, but weakly enough to slip off allowing the 
hydrolysis/reoxidation steps of the catalytic cycle to proceed. At the time, however, the precedents seemed 
clear, so the AD languished until 1987. 

Unraveling the mechanism of the AE was largely the work of M. G. Finn.13 His persistent explo- 
ration during the early- to mid-eighties of the AE’s titanium-tartrate catalyst system exposed a complex 
mixture of species in dynamic equilibrium with one other.” M. G. discovered the main species 
[Ti(DIPT)(O-i-f&J2 is substantially more active than the many other species present (significantly, it is 
five to ten times more active than Ti(OR),, a catalyst for the formation of racemic epoxy alcohol) and this 
rate advantage funnels catalysis through the appropriate tartrate-bearing species. 

If the tartrate-induced acceleration of the titanium-catalyzed epoxidation reaction came as a sur- 
prise, investigating that phenomenon brought even more surprising results. We ultimately found twenty- 
four metals other than Ti that catalyze the epoxidation of allylic alcohols by TBHP (figure I), but all these 
systems were strongly inhibited or killed by adding tartrate!” L&and-decelerated catalysis was clearly the 
rule while ligand acceleration was the extraordinarily valuable exception.* 

Shortly before I left for Caltech, Chris Burns, encouraged by Pui Tong Ho, presciently lobbied to 
resurrect the OsO&inchona asymmetric dihydroxylation, and, without any encouragement from me I 
must admit, he embarked on the synthesis of a stoichiometric C’-symmetric ligand for the AD.” A few 

*For a detailed account of ligand-decelerated catalysis, see the discussion of the “tridentate fiasco” in reference Iza. 
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dihydroquinidine derivatives 

PIGUti 2 

dihydroquinine derivatives 

Cinchona Alkaloid Ligands for the Asymmetric Dihydroxylation (AD) 

months later, I, too, was recommitted to osmium, and when Bill Mungall and Georg Schriider reviewed 
the work from 1979 they uncovered ee’s even better than previously reported. Meanwhile Eric Jacobsen 
attacked the problem from the mechanistic side, discovering that the l&and-dependent rate accelerations 
could be enormous.t3 

With these very encouraging results on the stoichiometric reaction just in, Istvan Mark6 joined the 
project. I was travelling at the time, and on his own initiative, unaware of the NIH propos$ he com- 
bined Hentges’ system” with the reliable Upjohn NMO-based catalytic osmylation system, immedi- 
ately getting results indicating the reaction was catalytic.24 However, unlike the dramatic “Eureka!” that 
accompanied the discovery of the AE, cautious optimism was the response to the catalytic AD and its ini- 
tially modest ee’s. Now, however, after six years of research since Mark6’s first experiments in October of 
I&‘, the AD’s utility rivals and often surpasses the AE’s.” 

Unlike the AE, for which Katsuki’s initial tartrate ester ligands have yet to be eclipsed, the ligands 
for the AD have evolved substantially in effectiveness and scope through substitution at the C-9 hydroxyl. 

The simple ester derivatives (e.g. the acetate and para-chlorobenzoate esters) gave way in 1990 and 
1991 to aryl ether derivatives, first proposed by Yun Gao during a late night group meeting to address the 
mechanistic question of a possible ligating role of the ester carbonyl. Brent Blackburn made the phenyl 
ether which, to our surprise, gave good ee’s, but was too hard to make to be competitive (at least with the 
two aromatic olefins tried) with the then dominant ptiru-chlorobenzoate (CLB) ligand. 

Almost a year later Declan Gilheany correctly predicted that aryl ethers should be better for 
aliphatic olefins than the CLB ligand,25 and these results laid the foundation for a steady expansion of this 
ligand class, culminating in the phenanthryl ether ligand.26 Another big jump in effectiveness came with 
the dimeric alkaloid ligands having a phthalazine core, first made by Jens Hartung in 1990.~’ Along with 
the pyrimidine ligands2* whose development they inspired, they remain the best general ligands for the 
AD reaction. 

The search for better ligands has been paralleled by advances in catalyst turnover efficiency: 
John Wai found both the second-catalytic-cycle problem and its partial remedy, slow addition 

of the olefin;29 
Since ferricyanide in tert-butanollwater provides an excellent two-phase system for catalytic 

osmylation, 3o Hoi-Lun Kwong applied it to the AD solving the second-cycle problem and 
the need for slow addition;” 

Willi Amberg found that adding organic sulfonamides greatly facilitates the rate of catalyst 
turnover for olefins whose osmate esters resist hydrolysis.“’ 
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I Squalcne monooxygenasc 

As the practicality (it has been scaled up to run in 4000 liter reactors with no ill effects on yield or 
ee32) and scope of the AD process grew, so did the pressure to understand the origin of its enantioselectiv- 
ity. Mechanistic studies dating from the early Seventies by Alan Teranishi and Jan B&&val133 were rekin- 
dled by Eric Jacobsen in 1987 and are now our major preoccupation. Some of the most important findings 
of the past three years will appear soon.34 

While a complete and general solution to the geraniol paradigms final challenge is tantalizingly 
within reach, comparing selectivity at the bench with selectivity in living systems remains striking. For 
example, the squalene monooxygenase in our livers unerringly deposits a single oxygen atom on the squa- 
lene molecule and, in so doing, further chooses only the si-enantioface of the terminal double bond 
(scheme 3). 35 On the other hand, the attempted AD of a single double bond of squalene does give the 
terminal diol in 96% ee. The preference for the terminal double bond is slight, however, and internal 
diols as well as tetraols also can be isolated from the reaction.36 Thus while the AD catalyst cannot match 
the exquisite selectivity of the enzymic system, this very inability to discriminate between the six trisubsti- 
tuted double bonds of squalene allows the exhaustive AD of squalene (scheme 4) in an overall yield of 
79.8% for the AD-/I reaction.37 

Serial multistep reactions such as these are stymied by Bob Ireland’s “arithmetic demon” - the geo- 
metric fall in yield in sequential chemical reactions. The AD of each double bond is one step in a proces- 
sion of six dihydroxylations, each,;ith a chemical and an optical yield, twelve yields in all. Thus the aver- 
age yield of each step is (0.798) or 98%, translating to 98% for each chemical yield, 96% ee for the 
single enantioselective reaction and 96% de for each of the five diastereoselective reactions. The high yield 
of a single enantiomer from the multiple hydroxylation events required to completely oxidize squalene 
reflects the reliability and selectivity of the AD process. Joel Hawkins’ Berkeley lab kinetically resolved the 
chiral fullerene c76 resulting in the first enantiomerically pure allotrope of carbon, the AD’s most intrigu- 
ing use to date. 38 

My decision nearly twenty-five years ago to study the selective oxidation of olefins produced an 
unexpected bonus, one that gave me an opportunity to investigate uncharted territory on a scale that is 
more associated with the previous half-century than with our own. Selenium, titanium and osmium, my 
three most,successful olefin oxidation catalysts, all had phobias associated with them that stunted their 
investigation. Selenium and osmium were considered highly toxic, and the peroxide oxidants used with 
titanium had a nasty reputation. Rarely did I find myself in another chemist’s territory; likewise, few 
wanted to cast a line in mine. 



4246 K. B. SHARPLESS 

t 
AD-P 

I AD-a 

Tracking these elements offers a rather curious way to view my research. Figure 3a plots the time 
course of their dominance (as measured by publications for want of a more qualitative ruler) during the 
past twenty-three years. Selenium came first, flourished, then ended abruptly. Osmium research came 
next, co-existing with selenium until both were eclipsed by titanium, the descendant of molybdenum and 
vanadium. Osmium made a strong comeback, knocking off titanium. 

Figure 3b, charting my research with respect to catalytic transformations, looks quite unlike figure 
3a, but relates directly to it. As my involvement with catalysis grew, the largely stoichiometric selenium 
reagents lost their appeal; titanium fell because the effectiveness of the titanium catalyst for the Ah is 
modest, with about only twenty turnovers per titanium center before all activity is lost. Osmium, despite 
a bimodal presentation, was never actually out of the picture, merely quiescent until the discovery of the 
highly catalytic AD (it has been run to completion with as little as Yso,ooo of osmium catalyst). 

In figure 3b the only real defection from the steady growth of catalysis to dominion in my research 
was the 1982 trough caused by the hexose synthesis collaboration with Sat Masamune. Stepping out of the 
realm of catalysis is almost unimaginable to me now, nor is osmium ever likely to be dislodged. Naturally 
I hope it will be joined by new catalysts. 

Ultimately, catalysis and its power are the engine driving my research. With nature’s catalysts for 
inspiration, it was possible to imagine small, asymmetric catalysts. Achieving that revealed the previously 
unimaginable: highly enantioselective catalysis without “lock and key” binding; small catalysts tolerating a 
wide range of substrates, thus with a high likelihood for synthetic utility; the notion of ligand-accelerated 
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35 

PIGURJZ 3 

(a) Selenium, titanium and osmium chemistry; note the osmium line’s bimodaliry. 
(b) Growth of catalysis in my laboratory. 

catalysis. The latter, I feel strongly, is the single most interesting finding to arise from the catalytic asym- 
metric epoxidation and dihydroxylation processes. Despite so far uncovering just these two ligand-acceler- 
ated systems and having identified a mere handful of others from the literature, 39 my research will con- 

tinue to plumb the vastness of the Periodic Table for more examples: their potential for great utility 
overcomes my misgivings about their scarceness. I am, after all, the optimistic product of the generation 
that caught the coelacanth. 
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